Welcome to ralsei’s documentation!

Ralsei is a lightweight and portable Python framework designed for analysts who need to quickly build modular data pipelines. It enables users to create comprehensive data preparation workflows that integrate both data collection and processing in a single, declarative pipeline. This framework is particularly beneficial for those who prefer not to depend on cloud-based solutions or local infrastructure setups.

Design goals

  • Modular Design: Allows for the creation of reusable tasks, making it easy to maintain and adapt pipelines as data requirements evolve.

  • SQL Database Integration: Operates directly on SQL databases, storing everything from raw data to processed results, thereby simplifying data tracking and analysis.

  • Resumable Tasks: Supports long-running tasks with the ability to resume operations at the row level, minimizing reprocessing in case of interruptions.

  • Workflow Control: Provides full control over the workflow, enabling users to rerun specific tasks on-demand and manage dependencies effectively.

Installation

pip install ralsei

Tip

Consider using Poetry for project-based dependency management

Example

Click on + icons for an explaination

init_sources.sql
CREATE TABLE {{table}}( -- (1)!
   id INTEGER PRIMARY KEY,
   year INT,
   name TEXT
);
{%split%} -- (2)!
INSERT INTO {{table}}(year, name) VALUES
(2015, 'Physics'),
(2018, 'Computer Science'),
(2021, 'Philosophy');
  1. SQL strings are processed with the jinja template engine

  2. SQLite can only execute one statement at a time (withot breaking transactions), so a custom {%split%} tag was introduced to separate the statements

logic.py
import requests
import json

def download(year: int, name: str):
   response = requests.get(
      "https://foo.com/api",
      params={"year": year, "name": name},
   )
   response.raise_for_status()
   return {"json": response.text}

def parse_page(data: str):
   for item in json.loads(data)["items"]:
      yield {"university": item["name"], "rank": item["rank"]}
app.py
from typing import Optional
from pathlib import Path
import click
import sqlalchemy
from ralsei import (
   Ralsei,
   Pipeline,
   Table,
   ValueColumn,
   Placeholder,
   compose_one,
   pop_id_fields,
)
from .logic import download, parse_page

# Define your tasks
class MyPipeline(Pipeline):
   def __init__(self, schema: Optional[str]):
      self.schema = schema

   def create_tasks(self):
      return {
         "init": CreateTableSql(
            table=Table("sources", self.schema),
            sql=Path("./init_sources.sql").read_text(),
         ),
         "download": MapToNewColumns(
            table=self.outputof("init"), # (1)!
            select=(
               "SELECT id, year, name FROM {{table}} WHERE NOT {{is_done}}" # (2)!
            ),
            columns=[ValueColumn("json", "TEXT")], # (3)!
            is_done_column="_downloaded", # (4)!
            fn=compose_one(download, pop_id_fields("id")) # (5)!
         ),
         "parse": MapToNewTable(
            source_table=self.outputof("download"),
            select="SELECT id, json FROM {{source}}",
            table=Table("records", self.schema),
            columns=[
               "record_id INTEGER PRIMARY KEY", # (6)!
               ValueColumn(
                  "source_id",
                  "INT REFERENCES {{source}}",
                  Placeholder("id"),
               ),
               ValueColumn("university", "TEXT"),
               ValueColumn("rank", "INT"),
            ],
            fn=compose(parse_page, pop_id_fields("id")),
         )
      }

# Create a CLI application
@click.option("-s", "--schema", help="Database schema")
class App(Ralsei):
   def __init__(self, db: sqlalchemy.URL, schema: Optional[str]):
      super().__init__(db, MyPipeline(schema))

if __name__ == "__main__":
   App.run_cli()
  1. This task depends on the output of another task

  2. Filter out rows that have already been downloaded. {{is_done}} here refers to the value of is_done_column

  3. Add a new column to the "sources" table and fill it with fn’s output

  4. This is a resumable task (since downloading takes a long time), so we need a special column to track progress

  5. compose and compose_one are ways of chaining function decorators. This is, basically, equivalent to:

    >>> @pop_id_fields("id")
    ... def parse_page(data: str):
    ...    for item in json.loads(data)["items"]:
    ...       yield {
    ...          "university": item["name"],
    ...          "rank": item["rank"]},
    ...       }
    ...
    >>> next(parse_page(id=1, data=data))
    {"id": 1, "university": "Harvard", "rank": 1}
    
  6. This would be part of the table definition, but not part of the INSERT statement (since this is not a ValueColumn)

The resulting app can be used like:

python ./app.py -d sqlite:///result.sqlite --schema dev run